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f jtprice,zhenni,jmf g@cs.unc.edu f jsch,pomarc g@inf.ethz.ch

In this supplementary material, we present additional
scale estimation results and overhead visualizations for
datasets from Wilson and Snavely [2] and Heinlyet al. [1];
we also provide ablative analyses of the various parts of
our approach. See also our supplementary video, which
contains �yovers of our reconstructed crowds and ground
surfaces for the four larger datasets analyzed in our pa-
per. This video contains comparative visualizations of 1)
the representative subset of individuals selected by our set
cover formulation, 2) all people and photographers placed
by our method, and 3) the original static reconstructions
from multi-view stereo that lack people and ground sur-
faces. Our visualizations clearly show the bene�ts of recov-
ering people and ground in these otherwise “lifeless” and
incomplete reconstructions.

1. Results on Additional Datasets

Here, we present additional quantitative results of the
scene scale estimates produced by our method (Table1).
These results cover 15 scenes in addition to those presented
in our paper: three from [2] (Tower of London, Trafalgar
Square, and Union Square Park), and 12 from [1]. For
each dataset, we also provide a top-down view of our per-
son placements based on the gravity direction estimated by
our method, and we show a comparative aerial image from
Google Earth. As in the paper, green dots show the place-
ment of detected individuals, red dots show locations for
photographers, and black dots show static scene structure.

In general, our placements for detected people into the
scene re�ect the actual structures where people walk, par-
ticularly along sidewalks. Places where people do not walk
(e.g., the fountains in Trafalgar Square) contain low den-
sities of (likely mis-detected) people. The accurate scale
estimates presented in the paper and above provide addi-
tional evidence as to the correctness of these placements.
We also note that there were failure cases on other scenes,
such as the Statue of Liberty (not shown), that were pri-
marily caused by a large number of false person detections
on human-like statues. These false detections are also vis-

ible in the water of the Trevi Fountain, below; however,
the scene conditions in that case did not appear to nega-
tively in�uence the result. We also empirically �nd that our
method's accuracy is generally higher in scenes having 1)
a larger number of person detections and 2) more complete
static reconstructions obtained via Structure-from-Motion.
The former condition provides greater support for approxi-
mate semantic triangulation, while the latter is important for
enforcing visibility constraints, which are helpful in avoid-
ing under-estimation of the length of one unit in the recon-
struction space.

Scene Error np nc

Brandenburg Gate -7.2% 5115 1131
British Museum +0.3% 2925 507
Buckingham Palace -5.9% 4972 1257
Hōzōmon Temple, Tokyo -1.5% 1768 230
Lincoln Memorial +6.5% 875 183
Palace of Westminster -8.8% 331 496
Pike Place Market, Seattle +8.5% 1081 312
Sacŕe Cœur, Paris -0.3% 1705 782
Taj Mahal -1.1% 395 805
Tōdai-ji Temple, Nara -2.1% 2419 733
Tower Bridge, London -2.6% 213 125
Tower of London -4.7% 551 381
Trafalgar Square +3.2% 13306 4328
Trevi Fountain -3.3% 4934 2343
Union Square Park, NYC -4.5% 2833 1023

Table 1. Quantitative results on our method for scale and place-
ment. “% Error” gives the amount that we over/under-estimated
the distance of one unit in the reconstruction.np andnc show the
number of placed detected people and photographers, respectively,
recovered by our method.

2. Ablative Analysis

We provide additional analysis on the various parts of
our reconstruction pipeline. Our algorithm has two general
stages: scale voting and scale re�nement. The scale voting
stage serves to initialize the subsequent re�nement. Here,
we demonstrate that both stages are necessary to produce a
satisfactory result, and we also show how different parame-



ter selections affect the end result in both stages.

2.1. Visibility Constraint During Voting

We �rst analyze the effect of removing the visibility con-
straint (Eq. (7)) during our scale voting procedure. The vis-
ibility constraint is necessary at this stage, but using the
constraint alone is not suf�cient to obtain the scene scale.
Fig. 1 shows the effect of turning off the constraint for our
Campitelli model. Because the (model-space) neighbor-
hood radius in Eq. (5) generally grows faster w.r.t scale than
pairwise person distances, using the neighborhood term
alone will result in arti�cially high overlap at larger scales.
The visibility constraint is thus important to rule out impos-
sible person placements.
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Figure 1. Our scale voting scheme with (blue) and without (or-
ange) the visibility constraint. The ground-truth scale is near 0.01
reconstruction units per meter.

Fig. 2 demonstrates that the visibility constraint alone is
not suf�cient for determining the scene scale. For each de-
tection in the Campitelli model, we compute the ratio of
our estimated neck distancesjjN i jj to the visibility thresh-
old vi (s) (c.f. Eq. (7)) for the ground-truth scene scale, and
for � 10% and� 20% of this scale. We sort these ratios
across all individuals and plot them. At the correct scale,
individuals adjacent to static structures will have a ratio of
� 1. We observe that false detections and mis-estimations
of the neck distance (having ratios much greater than one)
make this condition ambiguous. Our approximate triangu-
lation approach is thus necessary to obtain an initial scale.
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Figure 2. Ratio of our estimated neck distancesjjN i jj to the
visibility thresholdvi (s) for the ground-truth scale (GT), and for
larger/smaller scales. Values are sorted and clipped to[0:5; 1:5].

2.2. Effect of Scale Re�nement Terms in Eq. (14)

There are three optimization terms in our scale re�ne-
ment stage: a height prior, a local planarity penalty, and
a visibility constraint. Our algorithm requires the local
planarity term – without it, the optimal solution is to set
the scale to an in�nitesimal positive value (maximizing
Eq. (13)) and eachhi to the most probable height. Table2
shows our estimated scales with the height and visibility

terms removed. The effect of the height prior varies be-
tween datasets, but we generally �nd better scale estimates
when the constraint is included. The visibility constraint
is intended for scenes with fewer individuals, to help pre-
vent scale over-estimation caused by fewer well-supported
neighborhoods.

2.3. Effect of Parameters during Re�nement

To investigate the sensitivity of our algorithm to param-
eter changes, Table2 further shows results after modifying
the four major tunable parameters of Section 3.3 (photog-
rapher camera height� c, “overshooting” threshold� o, pla-
narity penalty� , and thexz neighbor threshold) by� 10%.
The relative scale differences are generally small, and we
observe only minor changes in the estimated 3D positions
of the detected individuals.

2.4. Comparing Scale Voting and Scale Re�nement

Finally, the 3rd and 4th columns of Table2 show the scale
improvement of our re�nement stage vs. our initial voting.
For many datasets, the re�ned scale estimate is closer to the
ground truth. Since the local planarity term is the driving
factor in our re�nement step, this result supports the notion
that the person placement (including the initial 3D triangu-
lation) is an important component of our approach.

Scene GT Initial Final No Height No Vis. -10% +10%

Cornell Quad 0.0269 0.0259 0.0280 0.0278 0.0294 0.0282 0.0272
Dubrovnik 0.0200 0.0183 0.0200 0.0199 0.0195 0.0197 0.0198
Pantheon 0.0913 0.0799 0.0873 0.0912 0.0877 0.0877 0.0874
Campitelli 0.0104 0.0097 0.0102 0.0102 0.0103 0.0102 0.0102
San Marco 0.0379 0.0336 0.0380 0.0375 0.0367 0.0383 0.0385
Alamo 0.1350 0.1253 0.1346 0.1323 0.1363 0.1320 0.1351
NYC Library 0.1437 0.1262 0.1418 0.1553 0.1442 0.1429 0.1403
Piccadilly 0.1216 0.1263 0.1290 0.1442 0.1329 0.1289 0.1275

Brandenburg Gate 0.1266 0.1287 0.1365 0.1433 0.1369 0.1356 0.1356
British Museum 0.3913 0.2793 0.3900 0.3434 0.4014 0.3923 0.3877
Buckingham Palace 0.0629 0.0604 0.0668 0.0776 0.0663 0.0662 0.0658
Hōzōmon Temple 0.5651 0.5070 0.5739 0.4642 0.5941 0.5797 0.5689
Lincoln Memorial 0.1161 0.1086 0.1090 0.1217 0.1093 0.1100 0.1080
Palace of Westmin. 0.0259 0.0280 0.0284 0.0298 0.0287 0.0289 0.0296
Pike Place Market 0.1840 0.1314 0.1696 0.1462 0.1754 0.1678 0.1704
Sacŕe Cœur 0.0507 0.0477 0.0509 0.0512 0.0503 0.0499 0.0502
Taj Mahal 0.0475 0.0420 0.0481 0.0488 0.0497 0.0491 0.0475
Tōdai-ji Temple 0.1340 0.1251 0.1369 0.1563 0.1380 0.1369 0.1354
Tower Bridge 0.2166 0.2391 0.2223 0.2391 0.2238 0.2244 0.2205
Tower of London 0.0484 0.0479 0.0507 0.0497 0.0517 0.0513 0.0498
Trafalgar Square 0.0700 0.0628 0.0678 0.0679 0.0673 0.0700 0.0671
Trevi Fountain 0.3179 0.2538 0.3288 0.3571 0.3278 0.3335 0.3213
Union Square 0.1380 0.1276 0.1430 0.1568 0.1427 0.1422 0.1416

Table 2. GT: Ground-truth scene scales (reconstruction units per
meter). Initial/Final: Estimates from our voting and re�nement
stages. No Height/Vis.: Height/visibility terms removed.� 10:
With modi�ed parameters. Red cells: Results where the estimated
length of one unit in the reconstruction was incorrect by> 10%.
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