
Supplementary Material: Privacy Preserving Localization via Coordinate
Permutations

A. Private Map without Known Coordinate

As described in the main paper, exposing the informa-
tion of one of the three coordinates can largely accelerate
the process of localization due to the reduced number of
configurations (26 versus 36). To show the effect of this,
we conducted an experiment on the HoloLens dataset [7] in
both scenarios of with and without exposing one coordinate.
The results are summarized in Figure 1. From the table, one
can observe similar median and AUC scores for both rota-
tion and location errors in these two settings. However, the
running times differ drastically by almost an order of mag-
nitude. As all privacy attack results shown in this work are
performed on the line clouds formed with one coordinate
exposed, we do not observe any evident privacy concerns
related to this setting.

MED (◦) AUC@1◦ MED (cm) AUC@10cm (1◦, 10 cm) Time (s)

PnL [6] 0.08 84.71 0.64 88.66 97.71 1.16
Proposed (w/) 0.07 86.31 0.56 89.71 97.92 6.61
Proposed (w/o) 0.08 86.32 0.55 89.78 98.02 59.55
PnP 0.07 87.85 0.51 90.84 98.83 0.07

Figure 1: Localization performance on HoloLens dataset
[7] in the private map scenario with and without expos-
ing one coordinate. The accuracy in both cases are similar,
however, without exposing one coordinate, the runtime in-
creases by about an order of magnitude.

B. Localization with Gravity Prior

LaMAR [5]. This dataset is a recent large-scale aug-
mented reality benchmark in unconstrained and challenging
environments. The dataset provides image streams with re-
alistic motions together with other heterogeneous sensor in-

formation and is well-suited for the task of localization and
mapping. In our experiments, we obtained the reference re-
constructions and image correspondences using the toolbox
provided with the dataset [3, 4]. Furthermore, thanks to the
onboard inertial measurement unit, gravity information is
provided for both the reference reconstruction and the query
sequences. We evaluate our method for private query local-
ization on the HoloLens validation sequences with avail-
able ground truth trajectories. For this experiment, we re-
stricted ourselves to the validation sequences in scene CAB,
because the rest of the dataset is not yet fully publicly avail-
able. There are in total 1172 query images for this experi-
ment, and each image has around 500 correspondences.

Cumulative distributions for rotation and location errors
on scene CAB are summarized in Figure 2. For 6 DoF pose
estimation, we can observe an improvement of recall by
12% within the tight threshold. This is achieved at the cost
of about 10 times of the running time. Note that however,
if the loose bound is considered, the recall of our method
is slightly worse than that of the random line method. We
attribute this loss in recall to the extremely low inlier ratios
of correspondences in these hard to localize query images.
Our method can benefit from p2 extra geometric constraints
as shown in the main paper where p is the inlier ratio. When
the inlier ratio is below 20%, which was a frequent case for
this dataset, the expected ratio of recoverable 2D point con-
straints is less than 4%. Such a low level of additional con-
straints does not add a sufficient improvement in the result.
Additionally, since each point is associated with 2 lines,
there are more false inliers considered in the optimization
process, which can potentially diminish the accuracy.

A similar trend in accuracy can be observed in the results
on 4 DoF camera pose estimation. For the tighter bound,
the proposed method shows improvements in recall while
for the loose bound, the recall of our method is lower. In
the 4 DoF case, the runtime difference between our method
and the random line method is significantly reduced as com-
pared to the 6 DoF case. Since minimal solvers in this case
only need 4 points, the total number of possible configura-
tions is 24 = 16. As such, the runtime of our method is less
than 3 times of the random line method.



(1◦, 10 cm) (5◦, 1 m) Time (s)

PnLP [7] 45.81 64.25 0.21
Proposed 46.63 63.49 2.50
PnP 52.68 67.93 0.09

u-PnLP [7] 53.24 73.63 0.11
u-Proposed 55.12 72.44 0.28
u-PnP 60.67 75.60 0.06

Figure 2: Localization performance on LaMAR [5] dataset
with and without gravity information. Note that with
gravity information, the runtime overhead of the proposed
method drops from 12 times to less than 3 times.

C. Analysis of Potential Privacy Attacks
C.1. Private Queries

The point recovery mechanism described in the paper
finds pairs by identifying rectangles where the corners are
given by the projections and permuted points. There is,
however, a potential for data leakage, as it is theoretically
possible to identify the rectangle using only three of the
corners. This means that for a swapped pair where only one
of the points is an inlier (belonging to be map and is non-
sensitive), we can potentially recover the other point posi-
tion despite it being an outlier and thus not present in the
map. For each inlier, the set of potential pairings is given
by (see equation (7) in the main paper)

C = {k | |xkj′ − x̃j′ | < ε, (xkj′ , k) ∈ Sj′}, (1)

As also mentioned in the main paper, this set likely con-
tains multiple candidates from points having similar x or
y-coordinates as the projection, which is why we proposed
to use the symmetric check.

In this section, we show that this symmetric check is ac-
tually necessary, and we experimentally investigate the ef-
fect of this type of inlier-outlier pair leakage. Our exper-
iments show both that few outlier points can be recovered
and that the success rate is low where many incorrect pairs
are found. In our experiment, we use the ground-truth cam-
era pose, which should give an upper-bound on what can
be recovered in real localization problems. Using the given
pose, we identify the inliers and run the original point re-
covery method (find the inlier-inlier pairs). For each inlier
which was not paired, we then try to form pairs using the
outlier points. We compare two approaches: a) for each
inlier where we have a unique match, i.e. |C| = 1, we

form the pair. b) For each inlier where have potential pairs
|C| > 0, we take the one with the smallest residual.

Quantitative result for both approaches on the dataset we
considered are summarized in Figure 3. We consider a point
as correctly recovered if the recovered position is within a
threshold to the original position. For the first approach,
considering the recovered pairs consisting of an inlier and
an outlier, the ratio of correctly recovered is about . How-
ever, the absolute ratio of such pairs is low, and is insignifi-
cant compared with the inlier-inlier ratio. As for the second
approach, among all recovered inlier-outlier pairs, the cor-
rect points only account for about 50%. While the absolute
ratio of such point is not high in this case, it is also hard to
distinguish correctly recovered points with incorrect ones.

Figure 3: Privacy attack on query images with two differ-
ent approaches. Percentage of recovered points of different
While only a small portion of outliers can be recovered, a
large proportion of which are incorrect.

To qualitatively show the impact of these additionally re-
covered points, image inversion attacks are summarized in
Figure 4. In this experiment, we run the method by Pit-
taluga et al. [2]. The original keypoints with their descrip-
tors are not privacy-preserving as realistic details can be
observed in the synthesized image (Figure 4a). Compared
with the results from points recovered with symmetric error
validation (Figure 4b), the results from both attacks contain
extra information due to the additionally recovered points.
For the unique attack approach, since the absolute number
of additionally recovered points is very small, there is no
perceivable difference in the quality of the inverted image.
In fact, it appears as if the incorrectly recovered points in-
troduce extra blur to the synthesized result. As for the min
attack approach, a larger difference between results can be
observed, yet the large ratio of incorrectly recovered points
makes the synthesized image preserve the privacy of any
recognizable details.

C.2. Private Maps

In this paper, we proposed to lift points along axis-
aligned lines, which poses a potential information leakage
by orthogonal projection and image inversion along the ma-
jor coordinate axes. To analyze the potential privacy risk



(a) Raw Features (b) Symmetric Error Recovery (c) Unique Attack (d) Min Attack

Figure 4: Inversion attacks for localization with private queries. Recovered image using: (a) the complete set of features,
(b) points recovered from the proposed method which includes the symmetric check, (c) additional points recovered from
inlier-outlier selecting points with unique matches, (d) taking the closest candidate.

to our method under such an attack, we synthesized im-
ages from the orthogonal projection using the method by
Pittaluga et al. [2].

The point cloud we consider here has its major axes
aligned with the coordinate system as shown in Figure 6a.
A synthesized example for the case that an attacker has ad-
ditional knowledge of which coordinates are correct can be
found in Figure 6b. Note that this is a scenario that can be
ruled out in practice, as it would require an attacker to inter-
cept the coordinate swapping procedure. In such a unreal-
istic scenario, the synthesized image indeed leaks informa-
tion, since every point projects to the correct position. This
works especially well in the top-down view, where mostly
only a single point projects to the same position in the in-
verted image. In the other directions, multiple structures in
the scene project at the same locations in the image and thus
confuse the inversion network.

The inversion result for the realistic scenario, where no
swapping information is revealed, is shown in Figure 6c.
In this case, the large number of corrupted points make the
image blurry and unrecognizable.

To further protect the privacy of the permuted point cloud
from the orthogonal projection attack, one can apply a ro-
tation to the original point cloud and then permute the co-
ordinates, as proposed in the main paper. This rotation can
be random or specifically chosen to avoid e.g. a top down
view of the scene. The rotation can then be applied to the
estimated camera pose before returning the result to the lo-
calization client. In a scenario, where the private map is
shared with clients for on-device localization, the rotation
can be safely shared, as it cannot be used to ”unrotate” the
permuted point cloud. The inversion results on such ro-
tated maps are illustrated in Figure 6d and Figure 6e. Under
this setting, even if the attacker is provided with the cor-
rect coordinate, simple orthogonal projection does not re-
veal meaningful information.

Figure 5: Runtimes for different stages in our RANSAC
procedure.

D. Complexity Analysis of Point Recovery

The complexity of the point recovery mechanism is
amortized linear on average for every pose query. For every
point, we first hash their coordinates into chunked bins. By
this, we can construct the S1, S2 in linear time on average.
For the point recovery with a certain camera pose, the pro-
cesses can be divided into the following steps: calculate the
reprojection point position for each point, establish the can-
didate sets for each inlier, and calculate the symmetric er-
ror to determine whether each candidate is valid. It is easy
to see that the first step is linear with respect to the num-
ber of points. For the second step, we only need to query
neighboring chunks for points within small distance from
reprojected point, which can be done in constant time using
hashing. Furthermore, since the average number of points
falling in these bins is constant, a constant number of addi-
tional checks will be conducted. Adding up the runtime of
these steps gives us the amortized linear runtime.

In practice, we only trigger the process of point recovery
when the number of inliers to the single-line constraint is
promising (> 80% of the current best inlier count). And
as Fig. 5 shows, the runtime overhead of point recovery is
comparatively very small.



(a) Original (b) Oracle (w/o rot) (c) Proposed (w/o rot) (d) Oracle (w/ rot) (e) Proposed (w/ rot)

Figure 6: Orthogonal projection of the permuted point cloud. (a) The three view orthogonal projection on the original point
cloud. (b) Results when the incorrect coordinate of each point is known. (c) The three view orthogonal projection results on
the permuted point cloud. (c) The projection results of the rotated point cloud when the incorrect coordinate of each point is
known. (d) Projection results of the rotated point cloud with permuted coordinate.

E. Comparison with Partial Localization

Geppert et al. [1] focus on on a different setting where
the query and the map are in 3D. Their method is, in
practice, expected to provide lower accuracy in case of
image-based queries due to sub-optimal 3D optimization
cost (compared to our image-based reprojection costs) and
client-side composition of the orthogonal results. Table 1
shows a comparison on the 7 scenes dataset.
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PnP PnLP Ours Partial Loc [1]

cm / ◦ cm / ◦ cm / ◦ τ1/τ2/τ3 τ1/τ2/τ3

chess 2.52 / 0.87 2.57 / 0.89 2.56 / 0.88 23.5 / 100.0 / 100.0 24.0 / 97.5 / 99.5
fire 2.31 / 0.94 2.41 / 1.0 2.34 / 0.96 58.5 / 100.0 / 100.0 35.0 / 97.0 / 99.0
heads 1.01 / 0.78 1.11 / 0.84 1.04 / 0.79 90.0 / 93.0 / 96.0 39.0 / 77.0 / 82.0
office 3.23 / 0.95 3.51 / 1.01 3.37 / 0.98 7.0 / 72.2 / 100.0 16.8 / 59.0 / 95.2
pumpkin 5.31 / 1.4 5.59 / 1.44 5.38 / 1.43 1.0 / 86.0 / 97.5 0.0 / 51.0 / 90.5
kitchen 4.46 / 1.42 4.56 / 1.47 4.61 / 1.48 11.6 / 81.8 / 100.0 26.6 / 87.0 / 99.6
stairs 5.1 / 1.41 5.75 / 1.64 5.55 / 1.61 7.0 / 74.0 / 99.0 0.0 / 11.0 / 48.0

Table 1: Result for 7scenes. (cm / ◦) are median errors in camera location / rotation and τ1/τ2/τ3 are kept the same as [1].
Our method closes the accuracy/recall gap from Special et al. (PnLP) to the non-privacy preserving method (PnP), and also
performs better to Geppert et al. (Partial Loc [1]).


